

Benutzerhandbuch Workstation ProViz™ W60

Technische Spezifikationen

Chipsatz	Intel C600 Workstation Chipsatz
Prozessor	2x Intel® Xeon™ E5-2600 6/8-Core Sandy Bridge-EP
Grafikkarten	NVIDIA Quadro / Tesla Grafikbeschleuniger bis zu 4x Dual-Slot Grafikkarten
Arbeitsspeicher	bis zu 512GB DDR3-RAM 1333/1600 MHz ECC Reg. 16 Speicherbänke, Quad Channel Memory
Festplatten	2x SATA 6.0 GB/s, 4x SATA 3.0 GB/s embedded RAID 0,1,10 für 4x SATA 3.0 GB/s Optional HW-RAID mit 4-8 HDDs
Betriebssysteme 32 & 64 Bit	Windows XP, Windows 7, Windows 8 Windows Server 2008, 2008 R2, 2012 debian, SUSE, RedHat, CentOS, Ubuntu uvm.
Netzwerk	2x 1000/100/10 Mbit Netzwerk 2x Intel I350-AM2 Gigabit Ethernet Controller Unterstützung für Teaming und Port Mirroring
Anschlüsse	Rückseite 2x USB 3.0, 4x USB 2.0 2x RJ45 1GBit LAN, 7.1 High Definition Audio ALC889 Front 2x USB 3.0, 1x USB 2.0, 1x eSATA, Mikrofon, Line-Out
Steckplätze	4x PCI-Express 3.0 x16, 1x PCI-Express 3.0 x4 (in x16 Slot) max. 4x Dual-Slot GPU + 1x Single Slot x4 (x16 kompatibel) 3x PCI-Express 3.0 x8 (nicht nutzbar bei 4 GPUs)
Stromversorgung	1200W / 1500W Netzteil 80+ Platin zertifiziert, Silent 100/240V, 50/60Hz
Geräuschentwicklung	ca. 29-39 dB nach ISO 9296, je nach Konfiguration Lüftersteuerung über Bios
Abmessungen	220 x 600 x 592 mm BHT

Umgebungsbedingungen

Temperatur	Temperatur Betrieb: 10°C - 35°C Außer Betrieb: -40°C - 70°C
Luftfeuchtigkeit	Betrieb: 20 - 85% rel. Luftfeuchtigkeit ohne Kondens. Außer Betrieb: 20 - 90% rel. Luftfeuchtigkeit ohne Kondens.
Erschütterung	Betrieb: 1/2 Sinus: 2g, 2-3 ms Außer Betrieb: Trapezoidal 25g Verpackt: Freie Fallhöhe 50cm nur einzelne, keine ständigen Erschütterungen
Vibrationen	Betrieb: 0,5g 5Hz - 500 Hz Außer Betrieb: 1.5g 5 - 500 Hz nur einzelne, keine ständigen Vibrationen

Betreiben, lagern oder transportieren Sie die Workstation nur unter den angegebenen Umgebungsbedingungen zum Schutz vor Beschädigungen und Fehlern.

Sicherheitshinweise

VORSICHT! Bei der Verwendung der Workstation müssen stets grundlegende Sicherheitsmaßnahmen beachtet werden, um Verletzungen, Überspannung, Feuer und Stromschlag zu vermeiden:

Verwenden Sie die Workstation nicht in der Nähe von Wasser wie z. B. in der Nähe eines Waschbeckens, einer Badewanne oder in feuchten Räumen.

Verwenden Sie die Workstation nicht bei Gewitter. Bei Gewitter ziehen Sie zum Schutz vor Beschädigungen durch Blitzschlag und Überspannung und zum Schutz von Personen den Netzstecker aus dem Netzteil.

Betreiben Sie das Gerät nur mit dem mitgelieferten Netzstecker. Verwenden Sie nach Möglichkeit eine Mehrfachsteckdose mit Überspannungsschutz oder eine Unterbrechungsfreie Stromversorgung zur Absicherung vor Überspannungsschäden.

Sorgen Sie für eine ausreichende Belüftung und einen Abstand von mindestens 10 cm zu den Lüftern an der Gehäuseoberseite, am rechten Seitenteil und auf der Rückseite des Gehäuses. Legen Sie keine Unterlagen oder Gegenstände auf die Gehäuseoberseite und lassen Sie die Lüfter frei.

Arbeiten im Inneren des Gerätes sind nur vom Fachmann durchzuführen. Vor den Arbeiten ist das Gerät unbedingt auszuschalten und der Netzstecker zu ziehen. Bei allen Arbeiten sind ESD Schutzmaßnahmen einzuhalten und die Hinweise zum sicheren Umgang mit elektronischen Bauteilen auf Seite 11 zu beachten.

Sorgen Sie für eine regelmäßige Datensicherung der Festplatten und SSDs um Datenverlust durch fehlerhafte Datenträger, Speichermodule und sonstige Hard- und Softwarefehler, auch Schadsoftware zu verhindern und im Falle eines Defektes die Daten schnell wiederherzustellen. Fragen Sie uns, wir helfen Ihnen gern bei einem Datensicherungskonzept.

Frontanschlüsse

- Power-On Schalter
- Power-Reset Schalter
- **3** Typenschild und Seriennummer
- 4 Kopfhörer Anschluss
- 6 Mikrofon Anschluss
- 6 2x Front USB 3.0
- 8 eSATA Anschluss für externe Festplatten
- 9 DVD-Brenner / Blu-Ray Brenner

Innenansicht

- 1 CPU 1 Intel Xeon E5-2600 Prozessor
- 2 CPU 2 Intel Xeon E5-2600 Prozessor
- 3 8x Memory Slots CPU 1
- ④ 8x Memory Slots CPU 2
- S 4x PCI-Express x16 Gen3.0 bis zu 4x GPUs
- 1200W/1500W Netzteil 80+ Platin
- 8 Einschub für optisches Laufwerk

Rückansicht I/O Shield

4 2x USB 3.0 **G** 4x USB 2.0

9 ID LED

O Status LED

Rückansicht

- Netzkabelanschluß
- 2 Netzschalter
- 3x Rändelschrauben zum Öffnen des Gehäuses
- Displayanschlüsse, siehe S. 9
- **G** 120mm Gehäuselüfter
- Vorbereitung für Sicherheitsschloß
- Typenschild und Seriennumer
- 8 Netzteilschrauben

Grafikkarten und Display Anschlüsse

Display Konfigurationen

Belüftungssystem

Sorgen Sie für ausreichend Abstand (min. 10 cm) zu den Lüftern an der Gehäuseoberseite, am rechten Seitenteil und auf der Rückseite des Gehäuses. Legen Sie keine Unterlagen oder Gegenstände auf die Gehäuseoberseite und lassen Sie die Lüfter frei.

Hinweise zum ESD Schutz

Regeln zur Vermeidung von Schäden

Elektronische Bauteile sind sehr empfindlich gegenüber elektrostatischen Entladungen. Elektrostatische Ladung entsteht immer dann, wenn sich zwei Körper berühren. Also nahezu bei jeder alltäglichen Situation entsteht gefährliche Ladung - durch Reibung der Kleidung, beim gehen, beim hinsetzen etc. Berührt man nun ein empfindliches Bauteil wie Platinen, Speicherchips oder Festplatten kommt es zu einer schlagartigen Entladung mit bis zu 100.000 Volt. Diese Entladung ist für Personen ungefährlich, zerstört aber die Leiterbahnen und Verbindungen von integrierten Schaltungen wie ein Blitzschlag in einen Baum.

Vermeiden Sie daher unbedingt Schäden durch unsachgemäße Handhabung und eletrostatische Entladungen und beachten Sie folgende Hinweise:

1. Berühren Sie niemals direkt Chips und Kontakte an Platinen.

2. Berühren Sie Speichermodule, Grafikkarten, Festplatten und Prozessoren immer nur an den außenkanten der Platine, ohne dabei Kontakte oder Bauteile zu berühren.

3. Sorgen Sie für eine ausreichende Erdung am Gehäuse und metallischen Gegenständen, wie z.B. Heizkörpern.

4. Verpacken Sie Komponenten ausschließlich in ESD geschützen Verpackungen (ESD Shielded).

5. Vermeiden Sie Kontakt mit hochaufladbaren Stoffen, wie Styropor, Kunststoffe, Teppichböden etc.

6. Tragen Sie keine aufladbare Kleidungstücke wie Polyester und Kunstfasern.

Gehäuse öffnen

 Lösen Sie die 3 Rändelschrauben (Abbildung ähnlich) auf der Rückseite des Gehäuses.

2. Ziehen Sie die Seitenblende nach hinten weg und nehmen Sie seitlich heraus.

Vor dem Öffnen des Gehäuses schalten Sie die Workstation aus und ziehen den Netzstecker aus dem Netzteil.

Frontblende entfernen

 Ziehen Sie die Frontblende auf beiden Seiten am oberen Ende nach vorne weg.

 Ziehen Sie dann den unteren Teil der Blende aus der Führung im Gehäuse heraus

Vor dem Öffnen des Gehäuses schalten Sie die Workstation aus und ziehen den Netzstecker aus dem Netzteil.

Festplatten ein- und ausbauen

1. Lösen Sie die Rändelschraube an der Laufwerkssperre nur leicht an

2. und ziehen Sie dann die Laufwerkssperre nach unten weg, so dass sich die Laufwerksschächte öffnen.

 um Festplatten nachzurüsten montieren Sie die Laufwerksschienen aus den Laufwerksschächten wie abgebildet. Die nötigen Schrauben befinden sich im Lieferumfang.

4. Schieben Sie die Festplatte in den Laufwerksschacht bis die Festplatte in der Backplane einrastet und arretieren Sie die Laufwerkssperre.

Netzteil ein- und ausbauen

1. Lösen Sie die vier Netzteilschrauben an der Rückseite des Gehäuses

2. Öffnen Sie den Hebel der Netzeilhalterung.

3. Lösen Sie die Netzteilhalterung aus der unteren Arretierung und anschließend aus der oberen Arretierung und entnehmen Sie die Halterung.

4. Entfernen Sie anschließend alle Kabel vom Netzteil und ziehen es vorsichtig heraus.

Vor dem Öffnen des Gehäuses schalten Sie die Workstation aus und ziehen den Netzstecker aus dem Netzteil.

Speicherbänke & Kanäle

		Pr	ocessor	Socke	t 1		Processor Socket 2								
(0)	(1)	()	2)	(3	3)	()	D)	(1)	(2	2)	(3)	
Char	nnel A	Char	inel B	Char	Channel C		nel D	Channel E		Channel F		Chan	nel G	Channel H	
A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2	G1	G2	H1	H2

CPU & CPU Lüfter Diagnose LEDs

Die Diagnose LEDs zeigen Fehler in Zusammenhang mit den Prozessoren an, oder Probleme von CPU und Systemlüftern.

Memory Diagnose

Defekte oder inkompatible Arbeitsspeichermodule werden automatisch erkannt und durch die zugehörige Diagnose LED angezeigt. Der Fehler wird außerdem im Hardware-Ereignisprotokoll verzeichnet. Das Ereignisprotokoll kann über das Tool Selview oder über das Bios angezeigt werden.

Light Guided Diagnose

Die Workstation ProViz W60 verfügt über eine intelligente Fehlerdiagnose und zeigt Probleme frühzeitig an. An der Rückseite des Gehäuses befinden sich die Light Guided Diagnose-LEDs mit deren Hilfe Sie Fehler ganz gezielt aufspüren und beheben können.

A System Status LED

Grün leuchtend	=	System arbeitet fehlerfrei
Grün blinkend	=	Warnungen vorhanden
Orange leuchtend	=	kritische Fehler gefunden
Orange blinkend	=	nicht kritische Fehler gefunden

B System ID LED

Zeigt eine blaue LED zur Identifizierung eines Systems bei Remotezugriff

LSB, 1, 2, 3, 4, 5, 6, MSB - POST Code LEDs

Light Guided Diagnose

LSB, 1, 2, 3, 4, 5, 6, MSB - POST Code LEDs

Beim Booten des Systems werden eine Reihe von Initialisierungen vom BIOS durchgeführt. Jeder Initialisierungsprozess ist einem eigenen POST Code zugewiesen. Die POST LEDs zeigen den zuletzt gestarteten Prozess an und helfen so bei der Diagnose wenn das System nicht erfolgreich gebootet werden kann.

		Dia	ignos	tic LE	D De	code	r		
		1 =	LED	On, 0	= LE	= LED Off			
Checkpoint	Up	per l	Vibble	e	Lo	ower	Nibb	le	
	MSB							LSB	
	8h	4h	2h	1h	8h	4h	2h	1h	
LED #	#7	#6	#5	#4	#3	#2	#1	#0	Description
SEC Phase									
01h	0	0	0	0	0	0	0	1	First POST code after CPU reset
02h	0	0	0	0	0	0	1	0	Microcode load begin
03h	0	0	0	0	0	0	1	1	CRAM initialization begin
04h	0	0	0	0	0	1	0	0	Pei Cache When Disabled
05h	0	0	0	0	0	1	0	1	SEC Core At Power On Begin.
06h	0	0	0	0	0	1	1	0	Early CPU initialization during Sec Phase.
07h	0	0	0	0	0	1	1	1	Early SB initialization during Sec Phase.
08h	0	0	0	0	1	0	0	0	Early NB initialization during Sec Phase.
09h	0	0	0	0	1	0	0	1	End Of Sec Phase.
0Eh	0	0	0	0	1	1	1	0	Microcode Not Found.
0Fh	0	0	0	0	1	1	1	1	Microcode Not Loaded.
PEI Phase									
10h	0	0	0	1	0	0	0	0	PEI Core
11h	0	0	0	1	0	0	0	1	CPU PEIM
15h	0	0	0	1	0	1	0	1	NB PEIM
19h	0	0	0	1	1	0	0	1	SB PEIM
MRC Proces	is Coo	des -	MR	C Pro	gres	s Co	de S	eque	nce is executed - See Table 83.
PEI Phase con	tinue	d							
31h	0	0	1	1	0	0	0	1	Memory Installed
32h	0	0	1	1	0	0	1	0	CPU PEIM (Cpu Init)
33h	0	0	1	1	0	0	1	1	CPU PEIM (Cache Init)
34h	0	0	1	1	0	1	0	0	CPU PEIM (BSP Select)
35h	0	0	1	1	0	1	0	1	CPU PEIM (AP Init)
36h	0	0	1	1	0	1	1	0	CPU PEIM (CPU SMM Init)
4Fh	0	1	0	0	1	1	1	1	Dxe IPL started
DXE Phase									
60h	0	1	1	0	0	0	0	0	DXE Core started
61h	0	1	1	0	0	0	0	1	DXE NVRAM Init

Light Guided Diagnose

		Dia	Diagnostic LED Decoder						
		1 =	ELED	On, 0	= LE	D Off	F		
Checkpoint	Up	pper l	Vibble	e	Lo	ower	Nibb	le	
	MSB	41-	21-	16	0ŀ	41-	21-	LSB	
LED #	8n #7	4n #6	2n #5	1n #4	8n #3	4n #2	2n #1	1n #0	Description
62h	0	1	1	0	0	0	1	0	SB RUN Init
63h	0	1	1	0	0	0	1	1	Dxe CPU Init
68h	0	1	1	0	1	0	0	0	DXE PCI Host Bridge Init
69h	0	1	1	0	1	0	0	1	DXE NB Init
6Ah	0	1	1	0	1	0	1	0	DXE NB SMM Init
70h	0	1	1	1	0	0	0	0	DXE SB Init
71h	0	1	1	1	0	0	0	1	DXE SB SMM Init
72h	0	1	1	1	0	0	1	0	DXE SB devices Init
78h	0	1	1	1	1	0	0	0	DXE ACPI Init
79h	0	1	1	1	1	0	0	1	DXE CSM Init
90h	1	0	0	1	0	0	0	0	DXE BDS Started
91h	1	0	0	1	0	0	0	1	DXE BDS connect drivers
92h	1	0	0	1	0	0	1	0	DXE PCI Bus begin
93h	1	0	0	1	0	0	1	1	DXE PCI Bus HPC Init
94h	1	0	0	1	0	1	0	0	DXE PCI Bus enumeration
95h	1	0	0	1	0	1	0	1	DXE PCI Bus resource requested
96h	1	0	0	1	0	1	1	0	DXE PCI Bus assign resource
97h	1	0	0	1	0	1	1	1	DXE CON_OUT connect
98h	1	0	0	1	1	0	0	0	DXE CON_IN connect
99h	1	0	0	1	1	0	0	1	DXE SIO Init
9Ah	1	0	0	1	1	0	1	0	DXE USB start
9Bh	1	0	0	1	1	0	1	1	DXE USB reset
9Ch	1	0	0	1	1	1	0	0	DXE USB detect
9Dh	1	0	0	1	1	1	0	1	DXE USB enable
A1h	1	0	1	0	0	0	0	1	DXE IDE begin
A2h	1	0	1	0	0	0	1	0	DXE IDE reset
A3h	1	0	1	0	0	0	1	1	DXE IDE detect
A4h	1	0	1	0	0	1	0	0	DXE IDE enable
A5h	1	0	1	0	0	1	0	1	DXE SCSI begin
A6h	1	0	1	0	0	1	1	0	DXE SCSI reset
A7h	1	0	1	0	0	1	1	1	DXE SCSI detect
A8h	1	0	1	0	1	0	0	0	DXE SUSI enable
A9n	1	0	1	0	1	0	0	1	
ABh	1	0	1	0	1	0	1	1	DXE SETUP start
ACh	1	0	1	0	1	1	0	0	DXE SETUP Input wait
ADII AEb	1	0	1	0	1	1	1	0	DXE Legacy Boot
AEh	1	0	1	0	1	1	1	1	
B0b	1	0	1	1	0	0	0	0	PT Set Virtual Address Man Benin
DUII R1h	1	0	1	1	0	0	0	1	PT Set Virtual Address Map Eegin
DIII		0			0	0	0		

Light Guided Diagnose

		Dia	agnos	stic LE	ED De	ecode	r		
		1 =	: LED	On, C	= LE	D Off			
Checkpoint	Up	pper N	Vibble	e	Lo	ower	Nibb	le	
	MSB							LSB	
	8h	4h	2h	1h	8h	4h	2h	1h	
LED #	#7	#6	#5	#4	#3	#2	#1	#0	Description
B2h	1	0	1	1	0	0	1	0	DXE Legacy Option ROM init
B3h	1	0	1	1	0	0	1	1	DXE Reset system
B4h	1	0	1	1	0	1	0	0	DXE USB Hot plug
B5h	1	0	1	1	0	1	0	1	DXE PCI BUS Hot plug
B6h	1	0	1	1	0	1	1	0	DXE NVRAM cleanup
B7h	1	0	1	1	0	1	1	1	DXE Configuration Reset
00h	0	0	0	0	0	0	0	0	INT19
S3 Resume									
E0h	1	1	0	1	0	0	0	0	S3 Resume PEIM (S3 started)
E1h	1	1	0	1	0	0	0	1	S3 Resume PEIM (S3 boot script)
E2h	1	1	0	1	0	0	1	0	S3 Resume PEIM (S3 Video Repost)
E3h	1	1	0	1	0	0	1	1	S3 Resume PEIM (S3 OS wake)
BIOS Recov	ery								
F0h	1	1	1	1	0	0	0	0	PEIM which detected forced Recovery condition
F1h	1	1	1	1	0	0	0	1	PEIM which detected User Recovery condition
F2h	1	1	1	1	0	0	1	0	Recovery PEIM (Recovery started)
F3h	1	1	1	1	0	0	1	1	Recovery PEIM (Capsule found)
F4h	1	1	1	1	0	1	0	0	Recovery PEIM (Capsule loaded)

Memory Initialisierung:

		Di	agno	stic LE	ED De	code	r				
Chaelenain		1 =	= LED	On, 0) = LE	LED Off					
Спескропп	U	oper l	Nibbl	e	Lo	owerl	Nibbl	e	Description		
ι	MSB							I SB	Description		
	0h	4h	Ъþ	1h	0h	4h	Ъþ	1h			
	011 #7	411	211	#4	42	411	Z11 #1	#0			
LED	#/	#0	#5	#4	#3	#Z	#1	#0			
MRC Progress Codes											
POb		•			-		-				
DOI	1	0	1	1	0	0	0	0	Detect DIMM population		
B1h	1	0	1	1	0	0	0	1	Set DDR3 frequency		
B2h	1	0	1	1	0	0	1	0	Gather remaining SPD data		
B3h	1	0	1	1	0	0	1	1	Program registers on the memory controller level		
B4h	1	0	1	1	0	1	0	0	Evaluate RAS modes and save rank information		
B5h	1	0	1	1	0	1	0	1	Program registers on the channel level		
B6h	1	0	1	1	0	1	1	0	Perform the JEDEC defined initialization sequence		
B7h	1	0	1	1	0	1	1	1	Train DDR3 ranks		
B8h	1	0	1	1	1	0	0	0	Initialize CLTT/OLTT		
B9h	1	0	1	1	1	0	0	1	Hardware memory test and init		
BAh	1	0	1	1	1	0	1	0	Execute software memory init		
BBh	1	0	1	1	1	0	1	1	Program memory map and interleaving		
BCh	1	0	1	1	1	1	0	0	Program RAS configuration		
BFh	1	0	1	1	1	1	1	1	MRC is done		

Light Guided Diagnose

		Di	agno	stic Ll	ED De	code	r		
		1 :	= LEC	0 On, () = LE	D Off			
Checkpoin t	U	pper	Nibbl	e	Lo	ower	Nibbl	e	
	MSB							LSB	Description
	8h	4h	2h	1h	8h	4h	2h	1h	
LED	#7	#6	#5	#4	#3	#2	#1	#0	
MRC Fatal	Error	Cod	es						
E8h									No usable memory error
									01h = No memory was detected by SPD read, or invalid config
	1	1	1	0	1	0	0	0	that causes no operable memory.
	÷	÷	1	Ŭ	· ·	Ŭ	Ŭ	ľ	02h = Memory DIMMs on all channels of all sockets are disabled
									due to hardware memtest error.
									3h = No memory installed. All channels are disabled.
E9h	1	1	1	0	1	0	0	1	Memory is locked by Intel Trusted Execution Technology and is
				1		· ·	-	<u> </u>	inaccessible
EAn									DDR3 channel training error
	4	4		~	4				01h = Error on read DQ/DQS (Data/Data Strobe) Init
	1	1		0	1	U	1	U	02n = Error on Receive Enable
									3n = Error on write DO/DOS (Data/Data Strope
EBb									Momony test failure
LDII	1	1	1	0	1	0	1	1	01b = Software membert failure
	1	1	Ľ.,	0	· .	۲	Ľ.	Ľ –	02h = Hardware memtest failed
									03h = Hardware Memtest failure in Locksten Channel mode
									requiring a channel to be disabled. This is a fatal error which
									requires a reset and calling MRC with a different RAS mode to
									retry.
EDh									DIMM configuration population error
									01h = Different DIMM types (UDIMM, RDIMM, LRDIMM) are
									detected installed in the system.
	1	1	1	0	1	1	0	1	02h = Violation of DIMM population rules.
	1	· ·	· ·	0	1 - E	1	0	Ľ –	03h = The 3rd DIMM slot cannot be populated when QR DIMMs
									are installed.
									04h = UDIMMs are not supported in the 3rd DIMM slot.
									05h = Unsupported DIMM Voltage.
EFh	1	1	1	0	1	1	1	1	Indicates a CLTT table structure error

Beep Codes

Beeps	Error Message	POST Progre ss Code	Description
1	USB device action	NA	Short beep sounded whenever a USB device is discovered
			in POST, or inserted or removed during runtime
1 long	Intel [®] TXT security	0xAE, 0xAF	System halted because Intel [®] Trusted Execution
	violation		Technology detected a potential violation of system
			security.
3	Memory error	See Tables 28 and 29	System halted because a fatal error related to the memory was detected.
2	BIOS Recovery started	NA	Recovery boot has been initiated
4	BIOS Recovery failure	NA	BIOS recovery has failed. This typically happens so quickly after recovery us initiated that it sounds like a 2-4 beep code.

	-	
Code	Reason for Beep	Associated Sensors
1-5-2-1	No CPUs installed or first CPU socket is empty.	CPU1 socket is empty, or sockets are populated incorrectly CPU1 must be populated before CPU2.
1-5-2-4	MSID Mismatch	MSID mismatch occurs if a processor is installed into a system board that has incompatible power capabilities.
1-5-4-2	Power fault	DC power unexpectedly lost (power good dropout) – Power unit sensors report power unit failure offset
1-5-4-4	Power control fault (power good assertion timeout).	Power good assertion timeout – Power unit sensors report soft power control failure offset
1-5-1-2	VR Watchdog Timer sensor assertion	VR controller DC power on sequence was not completed in time.
1-5-1-4	Power Supply Status	The system does not power on or unexpectedly powers off and a Power Supply Unit (PSU) is present that is an incompatible model with one or more other PSUs in the system.

