CADnetwork’
Installing and Running Tensorflow Premium, Performance. Innovation.

DOWNLOAD AND INSTALLATION INSTRUCTIONS
TensorFlow is now distributed under an Apache v2 open source license on GitHub.

STEP 1. INSTALL NVIDIA CUDA

To use TensorFlow with NVIDIA GPUs, the first step is to install the CUDA Toolkit.

STEP 2. INSTALL NVIDIA CUDNN

Once the CUDA Toolkit is installed, download cuDNN v5.1 Library for Linux (note that you will
need to register for the Accelerated Computing Developer Program).

Once downloaded, uncompress the files and copy them into the CUDA Toolkit directory
(assumed here to be in /usr/local/cuda/):
$ sudo tar -xvf cudnn-8.0-linux-x64-v5.1-rc.tgz -C /usr/local

STEP 3. INSTALL AND UPGRADE PIP

TensorFlow itself can be installed using the pip package manager. First, make sure that your
system has pip installed and updated:

$ sudo apt-get install python-pip python-dev

$ pip install --upgrade pip

STEP 4. INSTALL BAZEL

To build TensorFlow from source, the Bazel build system must first be installed as follows. Full
details are available here.

$ sudo apt-get install software-properties-common swig

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

$ echo "deb http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee
/etc/apt/sources.list.d/bazel.list

$ curl https://storage.googleapis.com/bazel-apt/doc/apt-key.pub.gpg | sudo apt-key add -
$ sudo apt-get update

$ sudo apt-get install bazel

STEP 5. INSTALL TENSORFLOW

To obtain the best performance with TensorFlow we recommmend building it from source.
First, clone the TensorFlow source code repository:

$ git clone https://github.com/tensorflow/tensorflow

$ cd tensorflow
$ git reset --hard 70de76e


https://github.com/tensorflow/tensorflow
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/accelerated-computing-developer
http://www.bazel.io/docs/install.html

CADnetwork’

Premium. Performance. Innovation.

Then run the configure script as follows:

$ ./configure

Please specify the location of python. [Default is /usr/bin/python]: [enter]

Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] n

No Google Cloud Platform support will be enabled for TensorFlow

Do you wish to build TensorFlow with GPU support? [y/N]y

GPU support will be enabled for TensorFlow

Please specify which gcc nvee should use as the host compiler. [Default is /usr/bin/gcc]: [enter]
Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0
Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details.
[Default is /usr/local/cudal: [enter]

Please specify the Cudnn version you want to use. [Leave empty to use system default]: 5

Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details.
[Default is /usr/local/cudal: [enter]

Please specify a list of comma-separated Cuda compute capabilities you want to build with.

You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Defaultis: "3.5,5.2"]: 5.2,6.1 [see https://developer.nvidia.com/cuda-gpus]

Setting up Cuda include

Setting up Cuda lib64

Setting up Cuda bin

Setting up Cuda nvwm

Setting up CUPTI include

Setting up CUPTI lib64

Configuration finished

Then call bazel to build the TensorFlow pip package:
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

And finally install the TensorFlow pip package
Python 2.7:
$ sudo pip install --upgrade /tmp/tensorflow_pkg/tensorflow-0.9.0-* whl

Python 3.4:
$ sudo pip install --upgrade /tmp/tensorflow_pkg/tensorflow-0.9.0-* whl

STEP 5. UPGRADE PROTOBUF

Upgrade to the latest version of the protobuf package:

Python 2.7:

$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-
cp27-none-linux_x86_64.whl

Python 3.4:
$ sudo pip3 install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-
cp34-none-linux x86 64.whl



https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-cp34-none-linux_x86_64.whl
https://storage.googleapis.com/tensorflow/linux/cpu/protobuf-3.0.0b2.post2-cp34-none-linux_x86_64.whl

CADnetwork’

Premium. Performance. Innovation.

STEP 6. TEST YOUR INSTALLATION

To test the installation, open an interactive Python shell and import the TensorFlow module:
$ cd

$ python

>>> import tensorflow as tf

| tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
| tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
| tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally

| tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
| tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

With the TensorFlow module imported, the next step to test the installation is to create a
TensorFlow Session, which will initialize the available computing devices and provide a means of

executing computation graphs:
>>> sess = tf.Session()

This command will print out some information on the detected hardware configuration. For
example, the output on a system containing a Tesla M40 GPU is:

>>> sess = tf.Session()

| tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:

name: Tesla M40

major: 5 minor: 2 memoryClockRate (GHz) 1.112

pciBusID 0000:04:00.0

Total memory: 11.25GiB

Free memory: 11.09GiB

To manually control which devices are visible to TensorFlow, set the CUDA_VISIBLE_DEVICES
environment variable when launching Python. For example, to force the use of only GPU 0:
$ CUDA_VISIBLE_DEVICES=0 python

You should now be able to run a Hello World application:
>>> hello_world = tf.constant("Hello, TensorFlow!")

>>> print sess.run(hello_world)

Hello, TensorFlow!

>>> print sess.run(tf.constant(123)*tf.constant(456))

56088

- See more at: http://www.nvidia.com/object/gpu-accelerated-applications-tensorflow-
installation.html#sthash.98tyHyl6.dpuf



